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Abstract
We study the ∂̄ equation subject to various boundary value conditions on bounded

simply connected Lipschitz domains D ⊂ C: for the Dirichlet problem with datum in
Lp(bD, σ), this is simply a restatement of the fact that members of the holomorphic
Hardy spaces are uniquely and completely determined by their boundary values. Here
we identify the maximal data spaces and obtain estimates in the maximal p-range for
the Dirichlet, Regularity-for-Dirichlet, Neumann, and Robin boundary conditions for
∂̄.

1 Introduction

Let D be a bounded, rectifiable, simply connected domain in C whose boundary is endowed
with the induced Lebesgue measure σ. We denote by Ep(D) the Smirnov class

Ep(D) :=

F ∈ ϑ(D) : ∥F∥pEp(D) := sup
j∈N

∫
bDj

|F (ζ)|pdσj(ζ) <∞

 , 0 < p <∞,

(with the standard modification for p = ∞) where ϑ(D) is the set of holomorphic functions
on D, and {Dj}j∈N is (any) exhaustion of D by rectifiable subdomains. Each F ∈ Ep(D)
has a non-tangential boundary value Ḟ (ζ) at σ-a.e. ζ ∈ bD, see (22). As is well known,
such boundary values determine a proper subspace of the Lebesgue space Lp(bD, σ), see [12,
Theorem 10.3]. The following congruence of Banach spaces (that is, set identity and norm
equivalence) was proved by D. Jerison and C. Kenig [16] whenever D is a chord-arc domain:

Ep(D) = Hp(D), 0 < p ≤ ∞. (1)
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Here Hp(D) is the holomorphic Hardy space:

Hp(D) := {F ∈ ϑ(D) : F ∗ ∈ Lp(bD, σ)} with norm ∥F∥Hp(D) := ∥Ḟ∥Lp(bD,σ) (2)

where F ∗ denotes the non-tangential maximal function of F , see (21). In view of the
congruence (1), we henceforth adopt the notation Hp(D) and hp(bD), respectively, for the
interior and boundary values of such spaces; hence

hp(bD) :=
{
Ḟ : F ∈ Hp(D)

}
⊊ Lp(bD, σ). (3)

One way to understand the relationship between Hp(D) and hp(bD) is to reframe both
spaces within the context of a Dirichlet boundary value problem for ∂̄ with datum in
Lp(bD, σ), namely

∂̄F (z) = 0 z ∈ D;

Ḟ (ζ) = f(ζ) σ-a.e. ζ ∈ bD;

F ∗ ∈ Lp(bD, σ).

where we are given f ∈ Lp(bD, σ) (4)

This problem is uniquely solvable if and only if f belongs to hp(bD): in such case, the
solution F must lie in Hp(D). Put another way, we have that hp(bD) is the maximal data
set for the problem (4), and Hp(D) is the solution space. See also [5] for a related result in
the case when D = D (the unit disk).

If D is a Lipschitz domain (that is, the topological boundary bD is locally the graph of
a Lipschitz function, see Definition 2.1), the above fact is stated more precisely as

Theorem 1.1. Let D ⊂ C be a bounded simply connected Lipschitz domain and let p > 0.
Given f ∈ Lp(bD, σ), we have that (4) is solvable if and only if f ∈ hp(bD), in which case
(4) has a unique solution and it lies in Hp(D). Furthermore,

• if p ≥ 1 and f ∈ hp(bD), then the solution F admits the representation

F (z) = CDf(z), z ∈ D

where CDf is the Cauchy integral for D acting on f ;

• if 1 < p <∞ and f ∈ hp(bD), we also have that

∥F ∗∥Lp(bD,σ) ≲ ∥f∥Lp(bD,σ) (5)

and the implied constant depends only on D and p.
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Readers familiar with the analogous result for the Laplace operator might be surprised
to see that conclusion (5) in Theorem 1.1 holds for p in the full range: 1 < p < ∞ rather
than 2−δ < p <∞, see (23) and Theorem 2.4 below. This reflects the fact that the effective
data set for (4), namely hp(bD), is a very small portion of Lp(bD, σ) (the data set for (23)).
It follows from Theorem 1.1 that if the boundary data of the Dirichlet problem for Laplace
operator (23) is taken in hp(bD, σ), then the existence of a unique solution (with estimates)
is guaranteed for any 1 < p < ∞. Analogous statements are true for all the boundary
conditions considered below.

Here we seek to determine the maximal data sets for the Regularity; Neumann, and
Robin problems for ∂ with data in Lebesgue or Sobolev spaces. Namely,


∂̄F (z) = 0 z ∈ D;

Ḟ (ζ) = f(ζ) σ-a.e. ζ ∈ bD;

(F ′)∗ ∈ Lp(bD, σ)

(6)

given f ∈ W 1,p(bD, σ). Also

∂̄G = 0 in D;

∂G

∂n
(ζ) = g(ζ) for σ-a.e. ζ ∈ bD

(G′)∗ ∈ Lp(bD, σ)

(7)

given g ∈ Lp(bD, σ) subject to the compatibility condition:

∫
bD

g dσ = 0, and



∂̄G = 0 in D;

∂G

∂n
(ζ) + b(ζ)Ġ(ζ) = r(ζ) for σ-a.e. ζ ∈ bD

(G′)∗ ∈ Lp(bD, σ)

(8)

given b and r in Lp(bD, σ), and with the Robin coefficient b subject to compatibility condi-
tions that will be specified below. In both problems, G′ denotes the complex derivative of
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G:

G′(z) =
∂G

∂z
(z), z ∈ D

whereas

∂G

∂n
(ζ) := −iT (ζ) ˙(G′)(ζ) = lim

z→ζ

z∈Γ(ζ)

⟨∇G(z), n(ζ)⟩R σ − a.e. ζ ∈ bD. (9)

Here Γ(ζ) is the coordinate (or regular) cone at ζ ∈ bD, see Definition 2.2, T (ζ) := t1(ζ) +
it2(ζ) is the positively oriented, complex tangent vector at ζ ∈ bD, and n(ζ) := −iT (ζ) is
the complex outer unit normal vector which, depending on context, we may interpret as the
vector (t2(ζ),−t1(ζ)) ∈ R2.

Our candidate solution space for all of these boundary conditions is the holomorphic
Sobolev-Hardy space

H1,p(D) := {G ∈ ϑ(D) : G′ ∈ Hp(D)}, p > 0 . (10)

It turns out that H1,p(D) is a Banach space for any p ≥ 1 in which case we have that

H1,p(D) ⊆ Hp(D) (11)

moreover for 1 < p < ∞ the set inclusion (11) is also an embedding of Banach spaces,
see Corollary 3.3 and Lemma 3.4. Hence for any p ≥ 1 the members of H1,p(D) possess
non-tangential boundary values which are in Lp(bD, σ). We write

h1,p(bD) :=
{
Ġ : G ∈ H1,p(D)

}
, 1 ≤ p ≤ ∞ (12)

and we show that h1,p(bD) ⊂ W 1,p(bD, σ), the Sobolev space for bD, see Proposition 3.6.
Thus any h ∈ h1,p(bD) possesses a tangential derivative ∂Th σ-a.e. bD.

Our first main result states that h1,p(bD) is the optimal data space for the Regularity
problem for ∂. That is,

Theorem 1.2. Let D be a bounded simply connected Lipschitz domain and let p ≥ 1. Given
f ∈ W 1,p(bD, σ), we have that (6) is solvable if and only if f ∈ h1,p(bD), in which case (6)
has a unique solution F and it lies in H1,p(D). If 1 < p <∞ and f ∈ h1,p(bD) we also have
that

∥F ∗∥L∞(bD,σ) + ∥(F ′)∗∥Lp(bD,σ) ≲ ∥f∥W 1,p(bD,σ)

and the implied constant depends only on D and p.
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We next consider the following two subspaces of Lp(bD, σ):

np(bD) :=
{
g := −i∂Th : h ∈ h1,p(bD)

}
, 1 ≤ p ≤ ∞ (13)

and
rpb(bD) :=

{
r := −i∂Th+ bh : h ∈ h1,p(bD)

}
1 ≤ p ≤ ∞. (14)

That is
np(bD) :=

{
g := −i∂T Ġ : G ∈ H1,p(D)

}
, 1 ≤ p ≤ ∞

and
rpb(bD) :=

{
r := −i∂T Ḣ + bḢ : H ∈ H1,p(bD)

}
1 ≤ p ≤ ∞.

Our second main result gives that np(bD) is the maximal data space for the Neumann
problem for the ∂ operator. Specifically,

Theorem 1.3. Let D ⊂ C be a bounded simply connected Lipschitz domain and let p ≥ 1.
Given g ∈ Lp(bD, σ) we have that (7) is solvable if and only if g ∈ np(bD), in which case all
solutions are in H1,p(D) and differ by an additive constant. Furthermore,

• the complex derivative of each solution G admits the representation

G′(z) = CD(iTg)(z), z ∈ D.

Here CD(iTg) is the Cauchy integral for D acting on the pointwise product

i T (ζ)g(ζ), σ-a.e. ζ ∈ bD

where T (ζ) is the unit tangent vector at ζ;

• If 1 < p <∞ and g ∈ np(bD) we have

∥(G′)∗∥Lp(bD,σ) ≲ ∥g∥Lp(bD,σ)

for each solution G. The implied constant depends only on D and p;

• If 1 < p <∞ and g ∈ np(bD), then for any α ∈ D there is a unique solution Gα in

H1,p
α (D) := {G ∈ H1,p(D) : G(α) = 0}

and Gα ∈ C1− 1
p (D) with

∥G∗
α∥C1− 1

p (D)
≲ ∥g∥Lp(bD,σ).
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Moreover, Gα admits the representation

Gα(z) = CD

(
h0 − h0(α)

)
(z), z ∈ D (15)

where

h0(ζ) :=

∫
γ(ζ0,ζ)

ig(η)dσ(η) ∈ h1,p(bD)

with ζ0 ∈ bD fixed arbitrarily and

γ(ζ0, ζ) :=

{
the piece of bD going from ζ0 to ζ in the positive direction if ζ0 ̸= ζ ,
∅ if ζ0 = ζ .

(16)
Furthermore, for each α ∈ D we have

∥G∗
α∥L∞(bD,σ) + ∥(G′

α)
∗∥Lp(bD,σ) ≲ ∥g∥Lp(bD,σ), 1 < p <∞.

The implied constant depends only on D, p and α.

For the Robin problem for the ∂ operator (8) we may take the Robin coefficient b to

be in Lp(bD, σ): this is on account of the inclusion h1,p(bD) ⊂ C1− 1
p (bD) for any p ≥ 1

(Proposition 3.6); in particular h1,p(bD) ⊂ L∞(bD) so that b Ġ ∈ Lp(bD, σ) for any G ∈
H1,p(D) and b ∈ Lp(bD, σ). In order to guarantee uniqueness of the solution, as well as a
representation formula, we further require that∫

bD

b(ξ) dσ(ξ) ̸= 2kπ for any k ∈ Z. (17)

See Example 6.1 for a holomorphic Robin problem which has infinitely many solutions where
the Robin coefficient b is not identically 0 and does not satisfy condition (17). Note that the
Neumann condition cannot be regarded as a sub-case of the Robin condition (namely with
b := 0) because it does not satisfy (17).

For any ζ, ξ ∈ bD we let γ(ζ, ξ) be as in (16) (with ζ and ξ in place of ζ0 and ζ,
respectively). Define the operator

Tbr(ζ) :=

i

∫
bD

r(ξ) e

∫
γ(ζ,ξ)

i b(η)dσ(η)

dσ(ξ)

e

∫
bD

i b(ξ)dσ(ξ)

− 1

, ζ ∈ bD. (18)
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From (17), it is clear the denominator in (18) cannot vanish, and this makes it easy to see
that

Tb : L
p(bD, σ) → L∞(bD, σ), 1 ≤ p ≤ ∞

is bounded with
∥Tbr∥L∞(bD,σ) ≤ σ(bD)1−

1
p C(D, b) ∥r∥Lp(bD,σ) (19)

where σ(bD) is the length of bD, and

C(D, b) := e∥b∥L1(bD,σ)

∣∣∣∣e ∫
bD

i b(ξ)dσ(ξ)

− 1

∣∣∣∣−1

.

We also have that Tb is smoothing for Lp(bD, σ) whenever 1 < p < ∞, see Proposition 6.2
for the precise statement. We may now state our third main result.

Theorem 1.4. Let D ⊂ C be a bounded simply connected Lipschitz domain and let p ≥ 1.
Suppose that the Robin coefficient b is in Lp(bD, σ) and satisfies condition (17). Given
r ∈ Lp(bD, σ) we have that (8) is solvable if and only if r ∈ rpb(bD), in which case (8) has a
unique solution and it lies in H1,p(D). Furthermore,

• the solution G admits the representation

G(z) = (CD ◦ Tb) r(z), z ∈ D ,

where Tb is defined in (18);

• for any 1 < p <∞ we have that

∥G∗∥L∞(bD,σ) + ∥(G′)∗∥Lp(bD,σ) ≲ ∥r∥Lp(bD,σ), (20)

where the implied constant depends only on D, p and the Robin coefficient b.

Remark 1.5. Any bounded Lipschitz domain must be finitely connected (because locally it is
a graph domain). A large portion of the harmonic analysis literature for Lipschitz domains
requires the ambient domain to be simply connected: sometimes this choice is only a matter
of convenience (the results can be extended to any bounded Lipschitz domain by routine
arguments). But there are also results whose proofs rely on conformal mapping (this is the
case for e.g., the proof of identity (1), see [16]): extending such results to arbitrary Lipschitz
domains would require a detailed analysis of the boundary behavior of the Ahlfors map
(the multiply-connected-domain analog of the Riemann map). To avoid these issues here
we focus on simply connected domains (with a few exceptions in Section 3). Further results
for multiply connected D can be found in [15, Section 5].
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Remark 1.6. We expect that our results may hold in less regular settings than Lipschitz. Here
we restrict the attention to the Lipschitz category because already it displays several features
typical of most non-smooth frameworks e.g., the restricted p-range for the boundary value
problems for the Laplacian, see Theorems 2.4 and 2.5 below, yet the proofs are less technical
than those for more irregular settings. For instance, for the non-tangential approach region
Γ(ζ), ζ ∈ bD, here we may take the so-called regular cone (or coordinate cone) given in
Definition 2.2, which is easier to work with than the corkscrew-like region {z ∈ D : |z−ζ| ≤
(1 + β) dist(z, bD)} needed to work with domains whose boundary is not a local-graph.

We henceforth use the following notation: two quantities A and B are said to satisfy
A ≲ B, if A ≤ CB for some constant C > 0 which may depend only on the domain D, the
exponent p and, when relevant, the fixed point α, or the Robin coefficient b. We say A ≈ B
if and only if A ≲ B and B ≲ A at the same time.

This paper is organized as follows. In Section 2 we collect a few well known features of
Lipschitz domains that are relevant here, and we recall the Dirichlet and Neumann problems
for the Laplace operator; we also prove Theorem 1.1. In Section 3 we present the main
properties of the holomorphic Sobolev-Hardy space H1,p(D). In Section 4 we prove Theorem
1.2 (Regularity problem for ∂). Finally, Theorem 1.3 (Neumann problem for ∂) and Theorem
1.4 (Robin problem for ∂) are proved in Sections 5 and 6, respectively.

Acknowledgement: This work was launched at the AIM workshop Problems on Holo-
morphic Function Spaces & Complex Dynamics, an activity of the AWM Research Network
in Several Complex Variables. We thank the American Institute of Mathematics and the
Association for Women in Mathematics for their hospitality and support. We also wish to
express our gratitude to Zhongwei Shen for helpful discussions.

2 Preliminaries

Throughout this paper the domains under consideration will be Lipschitz domains on C, as
defined below.

Definition 2.1. A bounded domain D ⊂ C with boundary bD is called a Lipschitz domain
if there are finitely many rectangles {Rj}mj=1 with sides parallel to the coordinate axes, angles
{θj}mj=1, and Lipschitz functions ϕj : R → R such that the collection {e−iθjRj}mj=1 covers bD
and (eiθjD) ∩ Rj = {x + iy : y > ϕj(x), x ∈ (aj, bj)} for some aj < bj < ∞. We refer to
such Rj’s as coordinate rectangles.

Definition 2.2. Let D be a Lipschitz domain and fix β > 0. For any ζ ∈ bD, let {Γ(ζ), ζ ∈
D} be a family of truncated (one-sided) open cones Γ(ζ) with vertex at ζ satisfying the
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following property: for each rectangle Rj in Definition 2.1, there exists two cones α and β,
each with vertex at the origin and axis along the y axis such that for ζ ∈ bD ∩ e−iθjRj,

e−iθjα + ζ ⊂ Γ(ζ) ⊂ Γ(ζ) \ {ζ} ⊂ e−iθjβ + ζ ⊂ D ∩ e−iθjRj.

It is well known that for Lipschitz D, Γ(ζ) ̸= ∅ for any ζ ∈ bD; see e.g., [10] or [27, Section
0.4]. Sometimes Γ(ζ) is referred to as a regular cone, or a coordinate cone, see Remark 1.6.

We will need an approximation scheme ofD by smooth subdomains constructed by Nečas
in [24], which we refer to as a Nečas exhaustion of D. See also [20] and [27, Theorem 1.12].
(Recall that Lipschitz functions are differentiable almost everywhere; thus if D is a bounded
Lipschitz domain, its boundary bD is a rectifiable Jordan curve that admits a (positively
oriented) unit tangent vector T (ζ) for σ-a.e. ζ ∈ bD.)

Lemma 2.3. [24, p. 5][27, Theorem 1.12] Let D be a bounded Lipschitz domain. There
exists a family {Dk}∞k=1 of smooth domains with Dk compactly contained in D that satisfy
the following:

(a). For each k there exists a Lipschitz diffeomorphism Λk that takes D to Dk and extends
to the boundaries: Λk : bD → bDk with the property that

sup{|Λk(ζ)− ζ| : ζ ∈ bD} ≤ C/k

for some fixed constant C. Moreover Λk(ζ) ∈ Γ(ζ).

(b). There is a covering of bD by finitely many coordinate rectangles which also form a family
of coordinate rectangles for bDk for each k. Furthermore for every such rectangle R, if
ϕ and ϕk denote the Lipschitz functions whose graphs describe the boundaries of D and
Dk, respectively, in R, then ∥(ϕk)

′∥∞ ≤ ∥ϕ′∥∞ for any k; ϕk → ϕ uniformly as k → ∞,
and (ϕk)

′ → ϕ′ a.e. and in every Lp((a, b)) with (a, b) ⊂ R as in Definition 2.1.

(c). There exist constants 0 < m < M < ∞ and positive functions (Jacobians) wk : bD →
[m,M ] for any k ∈ N, such that for any measurable set F ⊆ bD and for any measurable
function fk on Λk(F ) the following change-of-variables formula holds:∫

F

fk(Λk(η))wk(ζ) dσ(η) =

∫
Λk(F )

fk(ηk) dσk(ηk).

where dσk denotes arc-length measure on bDk. Furthermore we have

wk → 1 σ-a.e. bD and in every Lp(bD, σ) for any 1 ≤ p <∞ .
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(d). Let Tk denote the unit tangent vector for bDk and T denote the unit tangent vector of
bD. We have that

Tk → T σ-a.e. bD and in every Lp(bD, σ) for any 1 ≤ p <∞ .

(Note that in conclusions (b) through (d) the exponent p = ∞ cannot be allowed unless
D is of class C1.)

2.1 Boundary value problems for the Laplace operator

Let D be a simply connected Lipschitz domain. Given F : D → C, for any ζ ∈ bD we define
the non-tangential maximal function of F as

F ∗(ζ) := sup
z∈Γ(ζ)

|F (z)| (21)

where Γ(ζ) is the coordinate cone given in Definition 2.2. Furthermore, define the non-
tangential limit of F as

Ḟ (ζ) := lim
z→ζ

z∈Γ(ζ)

F (z). (22)

It is known that if F ∈ Hp(D), then Ḟ (ζ) exist for σ-a.e. ζ ∈ bD and Ḟ ∈ Lp(bD, σ), see
[12, Theorem 10.3].

For convenience we state without proof some relevant features of two well-known bound-
ary value problems for the Laplace equation on Lipschitz domains.

Theorem 2.4. [19, Def. 1.7.4; Coroll. 2.1.6 & Thm 2.2.22]; [27, Corollary 3.2] Let
D ⊂ Rk, k ≥ 2, be a bounded simply connected Lipschitz domain. Consider the Dirichlet
problem for Laplace’s operator

∆U = 0 in D;

U̇(ζ) = u(ζ) for σ-a.e. ζ ∈ bD;

U∗ ∈ Lp(bD, σ)

(23)

where the datum u is in Lp(bD, σ). Then there is δ = δ(D) > 0 such that (23) is uniquely
solvable whenever u ∈ Lp(bD, σ) with 2− δ < p <∞. Morevoer

∥U∗∥Lp(bD,σ) ≲ ∥u∥Lp(bD,σ).
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Recall that the generalized normal derivative of V at ζ ∈ bD is

∂V

∂n
(ζ) := lim

z→ζ

z∈Γ(ζ)

⟨∇V (z), n(ζ)⟩R = ⟨ ˙(∇V )(ζ), n(ζ)⟩R for σ − a.e. ζ ∈ bD, (24)

see (9).

Theorem 2.5. [21, (1.2) with b := 0];[19, Corollary 2.1.11 p. 48, Theorem 2.2.22 p.
56];[11, p.347] Let D ⊂ Rk, k ≥ 2 be a bounded simply connected Lipschitz domain. Consider
the Neumann problem for Laplace’s operator

∆V = 0 in D;

∂V

∂n
(ζ) = v(ζ) σ-a.e. ζ ∈ bD;

(∇V )∗ ∈ Lp(bD, σ)

(25)

where the datum v is in Lp(bD, σ) and satisfies the compatibility condition∫
bD

v(ζ) dσ(ζ) = 0.

Then there is ν = ν(D) > 0 such that (25) is uniquely solvable (modulo additive constants)
whenever v ∈ Lp(bD, σ) with 1 < p < 2 + ν. Moreover

∥(∇V )∗∥Lp(bD,σ) ≲ ∥v∥Lp(bD,σ).

where the implied constant depends solely on D.

In each theorem the solution(s) admit an integral representation in terms of layer poten-
tial operators, which we omit for brevity.

Remark 2.6. The p-range in each theorem above is maximal in the Lipschitz category. See,
for instance, [19, Remark 2.1.17].

2.2 The Dirichlet problem for ∂: proof of Theorem 1.1

For the sake of completeness we recall the proof of Cauchy’s theorem for h1(bD). Namely,
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Lemma 2.7. Let D be a bounded Lipschitz domain. Then∫
bD

f(ζ) dζ = 0 for any f ∈ h1(bD). (26)

Proof. Let {Dk} be a Nečas exhaustion of D and take f ∈ h1(bD). By definition of h1(bD),
there exists F ∈ H1(D) such that f = Ḟ . For each k, Dk is compactly contained in D with
smooth boundary and so by the classical Cauchy Theorem we have∫

Λk(bD)

F (ζk)dζk = 0,

where Λk is the diffeomorphism described in Lemma 2.3 part (a). Replacing dζk by Tk(ζk)dσk(ζk)
in the above integral and making use of the change-of-variables formula Lemma 2.3 part (c),
we have∫

bD

F (Λk(ζ))Tk(ζ)wk(ζ)dσ(ζ) =

∫
Λk(bD)

F (ζk)Tk(ζk)dσk(ζk) =

∫
Λk(bD)

F (ζk)dζk = 0.

Passing k → ∞ in the above and applying the dominated convergence theorem with the
dominating function MF ∗ ∈ L1(bD, σ) (here M is a uniform bound on the wk’s see Lemma
2.3), we obtain (26).

Lemma 2.8. Let D be a bounded simply connected Lipschitz domain and 1 < p < ∞. If
F ∈ Hp(D), then

∥F ∗∥Lp(bD,σ) ≈ ∥Ḟ∥Lp(bD,σ).

Proof. The inequality: ∥F ∗∥Lp(bD,σ) ≥ ∥Ḟ∥Lp(bD,σ) is immediate from the definitions, thus

we only need to show that ∥F ∗∥Lp(bD,σ) ≲ ∥Ḟ∥Lp(bD,σ) for any 1 < p <∞.

If 2 − δ(D) < p < ∞ the desired inequality follows at once from the Dirichlet problem
for harmonic functions (Theorem 2.4) because F ∈ Hp(D) solves (23) with datum u := Ḟ .
We next suppose that 1 < p < 2 and we let G ∈ ϑ(D) be any holomorphic antiderivative of
F (which exists since F is holomorphic in D which is simply connected); that is

F (z) = G′(z), z ∈ D.

It follows that G′ ∈ Hp(D) with

|(∇G)∗(ζ)| ≈ (G′)∗(ζ) = F ∗(ζ), and ˙(G′)(ζ) = F (ζ) σ − a.e. ζ ∈ bD . (27)
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Hence
∂G

∂n
(ζ) = −iT (ζ)Ḟ (ζ) for σ − a.e. ζ ∈ bD,

see (24). Thus G solves the Neumann problem for harmonic functions (25) with datum

v(ζ) := −iT (ζ)Ḟ (ζ) ∈ Lp(bD, σ)

(note that such v satisfies the compatibility condition:∫
bD

v(ζ)dσ(ζ) = 0

on account of Lemma 2.7.) Theorem 2.5 now ensures that ∥(∇G)∗∥p ≲ ∥Ḟ∥p, which proves
the desired inequality by way of (27).

Proof of Theorem 1.1: Let p > 0 and f ∈ Lp(bD, σ). We first show that (4) is solvable if, and
only if, f ∈ hp(bD). To this end, suppose that F is a solution of (4) with datum f : then it is
immediate from (4), (3) and (2) that F ∈ Hp(D) and f ∈ hp(bD). Conversely, if f ∈ hp(bD),
then f = Ḟ for some F ∈ Hp(D) and it follows from (2) that F solves (4). Now uniqueness
for any p > 0 follows from [12, Theorem 10.3]. Moreover, if p ≥ 1 and F ∈ Hp(D) is the
solution of (4) with datum f ∈ hp(bD), then F = CDf by Cauchy Formula for H1(D) [12,
Theorem 10.4]). Finally, if 1 < p <∞ then ∥F ∗∥p ≲ ∥f∥p by Lemma 2.8.

3 Holomorphic Sobolev-Hardy spaces

Here we highlight the main features of H1,p(D). It is worthwhile pointing out that several of
the results in this section do not require D to be simply connected: indeed, the definitions
of holomorphic Hardy space Hp(D) and of Sobolev-Hardy space H1,p(D), see (2) and (10),
are meaningful for any bounded Lipshitz domain D (whether or not simply connected).
Furthermore, since Lipschitz domains are local epigraphs, any bounded Lipschitz domain
must be finitely connected. Hence, an elementary localization argument shows that any
F ∈ Hp(D) has a nontangential limit Ḟ defined σ-a.e. on bD which also lies in Lp(bD, σ)
for any bounded Lipschitz domain D.

Proposition 3.1. Let D ⊂ C be a bounded Lipschitz domain and let α ∈ D. Then for any
G ∈ H1,p(D) and 1 ≤ p ≤ ∞, we have

G∗(ζ) ≲ (G′)∗(ζ) + ∥ ˙(G′)∥Lp(bD,σ) + |G(α)| for any ζ ∈ bD . (28)
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We first prove the following

Lemma 3.2. Let D be a bounded domain with smooth boundary. Then for any z, w ∈ D
there exists a piecewise smooth path γzw ⊂ D that joins z and w, whose length does not exceed
diam(D) + σ(bD).

Proof. For any two points z, w ∈ D, let ℓ denote the oriented line segment starting at z and
ending at w. Construct a path γzw that is equal to the pieces of ℓ which are in D and, for
the pieces of ℓ which are outside of D, γzw is the portion of bD connecting the point where ℓ
leaves D to the point where ℓ re-enters D. Then γzw has all the required properties.

Proof of Proposition 3.1. We claim that for any ζ ∈ bD,

G(z) ≲ (G′)∗(ζ) + ∥ ˙(G′)∥Lp(bD,σ) + |G(α)| for all z ∈ Γ(ζ) (29)

from which (28) follows on account of the boundedness of D. To prove (29), let α ∈ D be
fixed, and let Dα be a member of a Nečas exhaustion of D such that α ∈ Dα. In particular

Dα is smooth, and Dα ∩ Γ(ζ) ̸= ∅ for all ζ ∈ bD.

Let ζ ∈ bD and z ∈ Γ(ζ). Then we have

|G(z)| ≤
∫
ℓzw

|G′(µ)| dσ(µ) + |G(w)| for any w ∈ Dα ∩ Γ(ζ),

where ℓzw is the line segment joining w to z. The above line integral makes sense since
ℓzw ⊂ Γ(ζ) ⊂ D by convexity of the cone Γ(ζ) (see Definition 2.2) and G′ ∈ ϑ(D). Moreover,
the length L1 of ℓzw does not exceed the diameter of D. Hence

|G(z)| ≤ L1 (G
′)∗(ζ) + |G(w)| for any z ∈ Γ(ζ) and w ∈ Dα ∩ Γ(ζ). (30)

Next since Dα is smooth, for each w ∈ Dα by Lemma 3.2 there is a path γwα ⊂ Dα joining
the base point α to w, whose length L2 does not exceed some constant dependent only on
D. The Cauchy integral formula for G′ and Hölder inequality give

|G(w)−G(α)| ≤
∫
γw
α

|G′(µ)| dσ(µ) ≤ L2

2π
sup
µ∈γw

α

∫
bD

| ˙(G′)(η)|
|η − µ|

dσ(η) ≤ L2|bD|1−
1
p

2π dist(bD,Dα)
∥ ˙(G′)∥Lp(bD,σ),

for 1 ≤ p ≤ ∞, whence

|G(w)| ≲ |G(α)|+ ∥ ˙(G′)∥Lp(bD,σ) for any w ∈ Dα and 1 ≤ p ≤ ∞. (31)

The conclusion follows from (30) and (31).
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Note that inequality (29) is meaningful also for G ∈ H1,p(D) with 0 < p < 1, but for p
in such range we are unable to prove it.

Corollary 3.3. Let D ⊂ C be a bounded Lipschitz domain and let α ∈ D. For any G ∈
H1,p(D) and 1 ≤ p ≤ ∞ we have the set inclusion

H1,p(D) ⊆ Hp(D), 1 ≤ p ≤ ∞. (32)

If in addition D is simply connected and 1 < p <∞, then

∥G∗∥Lp(bD,σ) ≲ |G(α)|+ ∥G′∥Hp(D). (33)

Proof. The definition of G ∈ H1,p(D) gives that G ∈ ϑ(D) and G′ ∈ Hp(D). Consequently

(G′)∗, ˙(G′) ∈ Lp(bD, σ). By the pointwise estimate (28) and the boundedness of D, we get
G∗ ∈ Lp(bD, σ) and thus G ∈ Hp(D) for any p ≥ 1, proving (32).

If moreover, 1 < p <∞, then by Lemma 2.8 (which requires D to be simply connected)
we also have

∥(G′)∗∥Lp(bD,σ) ≲ ∥ ˙(G′)∥Lp(bD,σ) = ∥G′∥Hp(D).

Together with (28) this gives the desired inequality (33).

It follows from [12, Theorem 10.3] and (32) that every element of H1,p(D) has a non-
tangential limit in h1,p(bD) when D is a bounded simply connected Lipschitz domain, see
(12). The aforementioned localization argument and (32) give that this is true also for
multiply-connected D.

In view of Corollary 3.3, for any α ∈ D, any G ∈ H1,p(D) and any 1 ≤ p ≤ ∞ we set

∥G∥H1,p(D) := |G(α)|+ ∥G′∥Hp(D).

It is easy to see that the above defines a family of norms for H1,p(D) (one norm for each
choice of the base point α ∈ D). The proof of Proposition 3.1 also shows that all such norms
are equivalent to one other. Indeed, given α, α̃ ∈ D choose k ∈ N so that α, α̃ ∈ Dk (where
Dk is a member of a Nečas exhaustion for D), then the proof leading up to (31) shows that

|G(α)−G(α̃)| ≲ ∥ ˙(G′)∥Lp(bD,σ) = ∥G′∥Hp(D). As such we shall not specify α in the notation
of ∥ · ∥H1,p(D).

Lemma 3.4. Given D a bounded simply connected Lipschitz domain and 1 ≤ p ≤ ∞,
H1,p(D) is a Banach space with the norm ∥ · ∥H1,p(D).
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Proof. Let Gn be a Cauchy sequence in H1,p(D). Then G′
n is a Cauchy sequence in Hp(D)

and thus it converges to a function F in Hp(D). Since D is simply connected, F has a
holomorphic antiderivative G. Furthermore, we can choose an antiderivative G such that
G(α) = limn→∞Gn(α). Then G ∈ H1,p(D) and Gn converges to G in the H1,p(D)-norm.

Remark 3.5. The space H1,p(D) is not closed in the Hp(D)-norm, already for D = D (the
unit disc). To see this, let F ∈ Hp(D) be such that F ′ /∈ Hp(D) (any F ∈ Hp(D) that
does not continuously extend to D will satisfy this condition; see, for example, [12, Theorem
3.11]). Let Fn be the nth Taylor polynomial of F centered at 0: clearly Fn ∈ H1,p(D) (Fn is
a holomorphic polynomial). Moreover, since F ∈ Hp(D), Fn converges to F in the Hp(D)-
norm. So F ∈ H1,p(D)

Hp

\ H1,p(D), proving that H1,p(D) is not closed in the Hp-norm.

Let W 1,p(bD, σ), p ≥ 1, be the Sobolev space consisting of all Lp(bD, σ) functions
whose first order derivatives along the tangential direction of bD exist in the distributional
sense and are in Lp(bD, σ). Here we shall adopt the definition of the tangential derivative
in [27] that is invariant under rotations and translations. To be precise, given a coordinate
rectangle R = (a, b) × (c, d) and Lipschitz boundary function ϕ for D as in Definition 2.1
with angle θ = 0 (for simplicity and without loss of generality),

• [27, Definition 1.7] we say that a real-valued function u ∈ W 1,p(bD, σ) if u ∈ Lp(bD, σ),
and there exists f ∈ Lp(R ∩ bD, dσ) such that

−
∫ b

a

u (t, ϕ(t))ψ′(t)dt =

∫ b

a

f (t, ϕ(t))ψ(t)dt for all ψ ∈ C∞
c ((a, b)); (34)

• [27, Definition 1.9] the tangential derivative ∂Tu(ζ) of u at σ-a.e. ζ := (t, ϕ(t)) ∈ bD
is defined by

∂Tu(ζ)T (ζ) := (f(ζ), 0)− ⟨(f(ζ), 0), n(ζ)⟩Rn(ζ) = ⟨(f(ζ), 0), T (ζ)⟩RT (ζ)

where n(ζ) is the outer unit normal vector at ζ ∈ bD. Thus,

∂Tu(ζ) := ⟨(f(ζ), 0), T (ζ)⟩R.

In our local coordinates the unit tangent vector at ζ := (t, ϕ(t)) is

T (ζ) =
(1, ϕ′(t))

| (1, ϕ′(t)) |
,

hence

∂Tu(ζ) =
f(ζ)

| (1, ϕ′(t)) |
, ζ := (t, ϕ(t)) , t ∈ (a, b). (35)
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• A complex-valued function u + iv is said to be in W 1,p(bD, σ) if both its real part u
and its imaginary part v are in W 1,p(bD, σ), in which case we let

∂T (u+ iv)(ζ) = ∂Tu(ζ) + i∂Tv(ζ).

• W 1,p(bD, σ) is a Banach Space with

∥f∥W 1,p(bD,σ) := ∥f∥Lp(bD,σ) + ∥∂Tf∥Lp(bD,σ)

Proposition 3.6. Let D be a bounded simply connected Lipschitz domain. The following
properties hold:

(a). h1,p(bD) ⊂ W 1,p(bD, σ) for any p ≥ 1. That is, for any G ∈ H1,p(D), the tangential
derivative ∂T Ġ is a regular distribution and satisfies

∂T Ġ(ζ) = T (ζ) ˙(G′)(ζ) σ-a.e. ζ ∈ bD. (36)

(b). h1,p(bD) ⊂ C1− 1
p (bD) for any 1 ≤ p < ∞. More precisely, for any G ∈ H1,p(D) there

is a unique g ∈ C1− 1
p (bD) such that Ġ(ζ) = g(ζ) for σ-a.e. ζ ∈ bD.

Recall that for a closed set X we say that g ∈ C1− 1
p (X) if its Hölder norm, defined by

∥g∥
C

1− 1
p (X)

:= sup
x∈X

|g(x)|+ sup
x,y∈X

|g(x)− g(y)|
|x− y|1−

1
p

,

is finite. When p = 1, it reduces to the continuous function space C(X).

Proof of Proposition 3.6: For part (a), let {Rj}mj=1 be a family of coordinate rectangles cov-
ering bD as in Lemma 2.3 part (b); for any member of such family we henceforth omit the
label j and write R = (a, b) × (c, d) as well as θ, ϕ, ϕk as in Definition 2.1 and Lemma 2.3.
For any testing function ψ ∈ C∞

c ((a, b)), we have

−
b∫

a

Ġ (t, ϕ(t))ψ′(t)dt =− lim
k→∞

b∫
a

G (t, ϕk(t))ψ
′(t)dt

= lim
k→∞

b∫
a

(
Gx (t, ϕk(t)) +Gy (t, ϕk(t)) (ϕk)

′ (t)
)
ψ(t)dt
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Here the first equality is due to Lebesgue’s dominated convergence theorem (where we use
that G∗ ∈ Lp(bD, σ) ⊆ L1(bD, σ)); the second equality follows from integration by parts.
Since G is holomorphic in D, by the Cauchy-Riemann equation for holomorphic functions,
we have for t ∈ (a, b),

Gx (t, ϕk(t)) = G′ (t, ϕk(t)) and Gy (t, ϕk(t)) = iG′ (t, ϕk(t)) .

Thus

−
b∫

a

Ġ (t, ϕ(t))ψ′(t)dt = lim
k→∞

b∫
a

G′ (t, ϕk(t))
(
1 + i (ϕk)

′ (t)
)
ψ(t)dt

=

b∫
a

˙(G′) (t, ϕ(t)) (1 + iϕ′(t))ψ(t)dt,

where the last equality is due to Lemma 2.3 parts (b) and again Lebesgue’s dominated
convergence theorem (where this time we use that (G′)∗ ∈ Lp(bD, σ) ⊆ L1(bD, σ)).

Hence (34) holds with

f(t, ϕ(t)) := ˙(G′)(t, ϕ(t)) (1 + iϕ′(t)) .

By (35) and the fact that in complex notation we have that T = 1+iϕ′

|1+iϕ′| on R∩ bD, it follows

that for σ-a.e. ζ = (t+ iϕ(t)) ∈ bD,

∂T Ġ(ζ) =
˙(G′)(ζ) (1 + iϕ′(t))

|1 + iϕ′(t)|
= T (ζ) ˙(G′)(ζ).

Conclusion (a) is thus proved.

For the proof of conclusion (b), we let {Dk} be a Nečas exhaustion {Dk} of D, see Lemma
2.3. Given G ∈ H1,p(D) we fix a point ν0 ∈ bD where Ġ(ν0) exists (since G ∈ H1,p(D) ⊆
Hp(D), Ġ exists σ-a.e.). Let ζ ∈ bD be arbitrary and let γ(ν0, ζ) be the arc in bD from ν0 to
ζ oriented in the positive direction, see (16). Since G is holomorphic on D and Λk(γ(ν0, ζ))
is a smooth curve contained in D, by the Fundamental Theorem of Calculus for line integrals
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we have

G(Λk(ζ)) = G(Λk(ν0)) +

∫
Λk(γ(ν0,ζ))

∇Tk
G(ηk) dσk(ηk)

= G(Λk(ν0)) +

∫
Λk(γ(ν0,ζ))

Tk(ηk)G
′(ηk) dσk(ηk)

= G(Λk(ν0)) +

∫
γ(ν0,ζ)

(Tk ◦ Λk)(η) (G
′ ◦ Λk)(η)wk(η) dσ(η),

(37)

where the last identity is due to Lemma 2.3. Now for any ζ ∈ bD the right-hand side
converges as k → ∞ by the Lebesgue’s dominated convergence theorem (again as (G′)∗ ∈
Lp(bD, σ) ⊆ L1(bD, σ)), and by Lemma 2.3, to

g(ζ) := Ġ(ν0) +

∫
γ(ν0,ζ)

T (η) ˙(G′)(η) dσ(η).

It follows from the above that for any ζ ∈ bD the left hand side of (37) also converges as
k → ∞, and in fact

g(ζ) = lim
k→∞

G(Λk(ζ)) = Ġ(ζ) for σ-a.e. ζ ∈ bD,

because Λk(ζ) ∈ Γ(ζ), see Lemma 2.3. Now Hölder’s inequality gives

|g(ζ)− g(ξ)| ≤ ∥ ˙(G′)∥Lp(bD,σ)

(
σ(γζξ )

)1− 1
p
.

But
σ(γζξ ) ≲ |ζ − ξ| for any ζ, ξ ∈ bD

since Lipschitz domains are chord-arc, and the implied constant depends only on D (see, for

example, Section 7.4 in [25]). Hence g ∈ C1− 1
p (bD); the proof is concluded.

Remark 3.7. In the case when 1 < p < ∞, Proposition 3.6 (b) can be directly obtained
by incorporating Proposition 3.6 (a) with the Sobolev embedding theorem ([23, Theorem

3.6.6]). In fact, as a result of this, for any g ∈ h1,p(bD), one has g ∈ W 1,p(bD, σ) ⊂ C1− 1
p (bD)

along with the following estimate

∥g∥
C

1− 1
p (bD)

≲ ∥g∥W 1,p(bD,σ).
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4 The Regularity problem for ∂: proof of Theorem 1.2

Let f ∈ W 1,p(bD, σ). We first show that (6) is solvable if, and only if, f ∈ h1,p(bD). To
this end, suppose that F is a solution of (6) with datum f : then F is holomorphic, and
it is immediate from (6), (2) and (10) that F ′ ∈ Hp(D) which means that F ∈ H1,p(D),
and therefore f ∈ h1,p(bD), see (12). Conversely, if f ∈ h1,p(bD), then f = Ḟ for some
F ∈ H1,p(D) and (10) gives that F solves (6). Uniqueness follows from Theorem 1.1 (since
H1,p(D) ⊂ Hp(D)).

If p > 1 and F ∈ H1,p(D) is the solution of (6) with datum f ∈ h1,p(bD), then F = CDf
by Theorem 1.1. Make use of Remark 3.7 and the boundedness of the operator CD from

C1− 1
p (bD) to C1− 1

p (D) (see [22, Theorem 3.3]). Namely, the holomorphic function CDf

extends to F ∈ C1− 1
p (D) with

∥F∥
C

1− 1
p (D)

≲ ∥f∥
C

1− 1
p (bD)

≲ ∥f∥W 1,p(bD,σ).

In particular,
∥F ∗∥L∞(bD,σ) ≲ ∥f∥W 1,p(bD,σ).

On the other hand, we also have that F ′ solves (4) with datum

T (ζ) ∂Tf(ζ)

which belongs to hp(bD) by Proposition 3.6(a), hence

∥(F ′)∗∥Lp(bD,σ) ≲ ∥T ∂Tf∥Lp(bD,σ) = ∥∂Tf∥Lp(bD,σ)

again by Theorem 1.1.

5 The Neumann problem for ∂: proof of Theorem 1.3

Let p ≥ 1 and g ∈ Lp(bD, σ). We first show that the holomorphic Neumann problem (7)
is solvable if and only if g ∈ np(bD). To see this, suppose that G is a solution to (7) with
datum g: then it is immediate from (7) and (10) that G ∈ H1,p(D), hence Ġ ∈ h1,p(bD).
The latter together with (7) again, (9), (36) and (13) give that g ∈ np(bD). Conversely, if
g ∈ np(bD) then g = −i∂T Ġ for some G ∈ H1,p(D) and it follows from (9), (36), (10) and (2)
that G solves (7) with datum g. Now [12, Theorem 10.3] gives that G′ is unique, hence G
is unique modulo additive constants. Next we note that if G ∈ H1,p(D) is a solution of (7)
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with datum g ∈ np(bD), then F := G′ ∈ Hp(D) is the solution of the holomorphic Dirichlet
problem (4) with datum

f(ζ) := iT (ζ)g(ζ) = iT (ζ)
∂G

∂n
(ζ) = ˙(G′)(ζ)

by (7) and (9). Hence f ∈ hp(bD) and Theorem 1.1 gives G′ = CD(iTg).
Theorem 1.1 also grants that

∥(G′)∗∥Lp(bD,σ) ≲ ∥iTg∥Lp(bD,σ) = ∥g∥Lp(bD,σ) 1 < p <∞.

Furthermore, it is clear from all we did that for any α ∈ D, the holomorphic Neumann
problem (7) has a unique solution Gα ∈ H1,p

α (D).
For the remainder of the proof, we will assume that 1 < p < ∞. Fix one point ζ0 ∈ bD

and define

h0(ζ) =

∫
γ(ζ0,ζ)

ig(η)dσ(η) for every ζ ∈ bD.

where γ(ζ0, ζ) is as in (16). Let ξ ∈ bD be a Lebesgue point of g. Since g ∈ Lp(bD, σ) ⊆
L1(bD, σ), Lebesgue points exist σ-a.e. on bD. We have for any ζ ∈ bD,∣∣∣∣∣h0(ζ)− h0(ξ)∫

γ(ξ,ζ)
dσ

− ig(ξ)

∣∣∣∣∣ =
∣∣∣∣∣
∫
γ(ξ,ζ)

(g(η)− g(ξ)) dσ(η)∫
γ(ξ,ζ)

dσ

∣∣∣∣∣ .
The right-hand side of the above equation tends to 0 as ζ approaches ξ along bD since ξ is
a Lebesgue point of g. Thus, h0 admits a tangential derivative σ-a.e. and moreover

∂Th0 = ig . (38)

Hölder’s inequality gives ∥h0∥∞ ≲ ∥g∥p; it follows that h0 ∈ W 1,p(bD, σ) with

∥h0∥W 1,p(bD,σ) ≲ ∥g∥Lp(bD,σ).

Furthermore, since g ∈ np, we also have h0 ∈ h1,p(bD) by (38) and the definition of np,
along with the fact that every function in W 1,p(bD, σ) with vanishing tangential derivative
is constant. See, for instance, [23, Theorem 3.6.5]. Now [22, Theorem 3.3] together with the

Sobolev embedding W 1,p(bD, σ) ⊂ C1− 1
p (bD) in Remark 3.7, gives that CD (h0) ∈ C1− 1

p (D)
with

∥CD (h0) ∥
C

1− 1
p (D)

≲ ∥h0∥
C

1− 1
p (bD)

≲ ∥h0∥W 1,p(bD,σ) ≲ ∥g∥Lp(bD,σ). (39)
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Let Gα be the unique solution to (7) with datum g, hence Gα(α) = 0 and ∂T Ġα = ig
by (9) and (36), and (38) along with [23, Theorem 3.6.5] give that Ġα = h0 + λα for some
constant λα. That is, Gα solves the Regularity problem (6) with datum

h0 + λα ∈ h1,p(bD).

(Note that λα ∈ h1,p(bD) since H(z) := λαz ∈ H1,p(D), see (12) and (2).)

Theorem 1.2 now gives

Gα(z) = CDh0(z) + λα, z ∈ D (40)

(recall that CD(1)(z) ≡ 1). Since Gα(α) = 0, we further have λα = −CDh0(α), hence Gα

admits the representation (15). In particular, (39) gives that λα ≲ ∥g∥Lp(bD,σ) and that

Gα ∈ C1− 1
p (D) with

∥Gα∥
C

1− 1
p (D)

≲ ∥g∥Lp(bD,σ).

In particular,
∥G∗

α∥L∞(bD,σ) ≲ ∥g∥Lp(bD,σ).

Remark 5.1. The above construction does not depend on the choice of ζ0 in the following
sense. If another point ζ1 were chosen instead with a corresponding function h1, then h0
and h1 would only differ by an additive constant that can be chosen so that h0(ζ)−h0(α) =
h1(ζ)− h1(α) for σ-a.e. ζ ∈ bD.

6 The Robin problem for ∂

We begin with an example that shows that the uniqueness of the holomorphic Robin problem
fails in general if the compatibility condition (17) is dropped.

Example 6.1. Consider the following homogeneous holomorphic Robin problem on D:

∂̄G = 0 in D;

∂G

∂n
(ζ)− Ġ(ζ) = 0 for ζ ∈ bD

(∇G)∗ ∈ Lp(bD)

(41)
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Making use of the fact that T (ζ) = iζ on bD one can directly verify that G(z) := Cz solves
(41) for any constant C. Note that b = −1 on bD with∫

bD

b(ζ)dσ(ζ) = −2π.

6.1 The smoothing operator Tb
For ζ, ξ ∈ bD with ζ ̸= ξ, recall that γ(ζ, ξ) is the piece of bD joining ζ to ξ in the positive
direction. In particular, we define γ(ζ, ζ) = ∅; if ξ approaches ζ along the positive orientation
of γ, we denote it by ξ → ζ−, with γ(ζ, ζ−) = bD.

Proposition 6.2. Let D be a bounded simply connected Lipschitz domain and let 1 < p <∞.
Assume b ∈ Lp(bD, σ) satisfies the compatibility condition (17). Then for the operator Tb

defined in (18), we have that

(i.) Tb is bounded: L
p(bD, σ) → C1− 1

p (bD). Namely

∥Tb r∥
C

1− 1
p (bD)

≲ ∥r∥Lp(bD,σ).

(ii.) Tb is bounded: L
p(bD, σ) → W 1,p(bD, σ). Namely

∥Tb r∥Lp(bD,σ) + ∥∂T (Tb r)∥Lp(bD,σ) ≲ ∥r∥Lp(bD,σ), (42)

and Tbr gives the unique solution to

−i∂Th(ζ) + b(ζ)h(ζ) = r(ζ) for σ − a.e. ζ ∈ bD. (43)

(iii.) Tb takes rp(bD) into h1,p(bD). Hence CD ◦ Tb takes r
p(bD) into H1,p(D).

Proof. We adopt the shorthand

b̃z(ζ) := e
i

∫
γ(z,ζ)

b(ξ)dσ(ξ)

for ζ ∈ bD;

b̃0 := e
i
∫
bD

b(ξ)dσ(ξ)

,

and

r̃(z) :=

∫
bD

b̃z(ζ)r(ζ)dσ(ζ), z ∈ bD.
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Then the compatibility condition (17) is equivalent to

b̃0 − 1 ̸= 0. (44)

Proof of (i.): We only need to show

∥r̃∥
C

1− 1
p (bD)

≲ ∥r∥Lp(bD,σ). (45)

First, since ∥b̃z∥L∞(bD,σ) ≤ e∥b∥L1(bD,σ) ≲ 1,

sup
ζ∈bD

|r̃(ζ)| ≲ ∥r∥L1(bD,σ) ≲ ∥r∥Lp(bD,σ). (46)

For fixed ζ1, ζ2 ∈ bD, the arclength σ(γ(ζ1, ζ2)) ≈ |ζ1 − ζ2| by the Lipschitz property of bD.
Without loss of generality, assume that |ζ1 − ζ2| is small. For σ-a.e. ξ ∈ bD \ γ(ζ1, ζ2),

∣∣∣∣ei
∫

γ(ζ1,ξ)

b(η)dσ(η)

− e
i

∫
γ(ζ2,ξ)

b(η)dσ(η)
∣∣∣∣ ≤ e∥b∥L1(bD,σ)

∣∣∣∣∣∣∣
∫

γ(ζ1,ζ2)

|b(η)|dσ(η)

∣∣∣∣∣∣∣ ≲ |ζ1 − ζ2|1−
1
p .

Here we used the mean-value theorem in the first inequality (more precisely, |ez1 − ez2| ≤
ex|z1 − z2| whenever |z1|, |z2| < x := ∥b∥L1(bD,σ)) and Hölder inequality in the second in-
equality. On the other hand, for σ-a.e. ξ ∈ γ(ζ1, ζ2),∣∣∣∣∣ei

∫
γ(ζk,ξ)

b(η)dσ(η)
∣∣∣∣∣ ≤ e∥b∥L1(bD,σ) ≲ 1, k = 1, 2.

Thus by Hölder inequality

|r̃(ζ1)− r̃(ζ2)| ≲
∫

bD\γ(ζ1,ζ2)

∣∣∣∣ei
∫

γ(ζ1,ξ)

b(η)dσ(η)

− e
i

∫
γ(ζ2,ξ)

b(η)dσ(η)
∣∣∣∣ |r(ξ)|dσ(ξ)

+

∫
γ(ζ1,ζ2)

|r(ξ)|dσ(ξ)

≲|ζ1 − ζ2|1−
1
p∥r∥Lp(bD,σ).

Equation (45) follows from the above inequality and (46).
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Proof of (ii.): We first show that there exists a unique solution to (43). We shall adopt
the arclength variable s ∈ [0, s0) to parametrize bD, where ζ(0) = lims→s−0

ζ(s) = z for a

fixed z ∈ bD, and |ζ ′(s)| = 1 for a.e. s ∈ [0, s0).
Write h(s) := h(ζ(s)), and similarly for T , b, b̃z and r. In particular, for s ∈ [0, s0),

we have b̃z(s) = e
i

s∫
0

b(s)ds
. It is immediate to verify that b̃z, b̃

−1
z ∈ W 1,p((0, s0)). We further

continuously extend b̃z to s0 with b̃z(s0) := e
i
s0∫
0

b(s)ds
= b̃0.

Since ∂Th = dh
ds
, any solution h to (43) necessarily satisfies

−ih′(s) + b(s)h(s) = r(s), for a.e. s ∈ (0, s0). (47)

This is a first order linear ordinary differential equation. Using the method of integrating
factors, we have

d

ds

(
b̃z(s)h(s)

)
= ib̃z(s)r(s), for a.e. s ∈ (0, s0). (48)

Thus any solution to (47) is of the form

h(s) =ib̃−1
z (s)

s∫
0

b̃z(t)r(t)dt+ Cb̃−1
z (s) for a.e. s ∈ (0, s0) (49)

for some constant C. Since b̃zr ∈ Lp((0, s0)), one has
s∫
0

b̃z(t)r(t)dt ∈ W 1,p((0, s0)) ⊂

L∞((0, s0)). Together with the fact that b̃−1
z ∈ W 1,p((0, s0)), one can further verify that

h ∈ W 1,p((0, s0)). In particular, by the Sobolev embedding theorem, every solution to (47),
and hence to (43), is continuous on (0, s0). Note that due to the closedness of bD, a continu-
ous solution to (47) becomes a solution to (43) if and only if the following natural boundary
value condition is imposed to (47):

h(0) = h(s0). (50)

Making use of the facts that b̃z(0) = 1 and b̃z(s0) = b̃0, (50) is further equivalent to

i+ C = ib̃0

s0∫
0

b̃z(t)r(t)dt+ Cb̃0. (51)

Due to (44), the constant C in (49) is uniquely determined by (51). As a consequence,
there exists a unique solution to (47) with boundary value condition (50), and thus a unique
solution to (43).
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Next, we verify that h = Tbr in (18) solves (43) explicitly. Integrate (48) from 0 to s0 to
get

b̃z(s0)h(s0)− b̃z(0)h(0) =

s0∫
0

ib̃z(s)r(s)ds = i

∫
bD

b̃z(ζ)r(ζ)dσ(ζ).

Making use of the facts that h(s0) = h(0) = h(z), b̃z(0) = 1 and b̃z(s0) = b̃0 again, we see
that Tbr solves (43).

Finally we show the desired estimate for Tb. The estimate supζ∈bD |Tbr(ζ)| is done in
(19). For the estimate of ∂T (Tbr), we make use of the fact that Tbr satisfies (43) and (19) to
get

∥∂T (Tbr)∥Lp(bD,σ) ≤∥bTbr∥Lp(bD,σ) + ∥r∥Lp(bD,σ)

≲∥b∥Lp(bD,σ) sup
ζ∈bD

|Tbr(ζ)|+ ∥r∥Lp(bD,σ)

≲∥b∥Lp(bD,σ)∥r∥Lp(bD,σ) + ∥r∥Lp(bD,σ) ≲ ∥r∥Lp(bD,σ).

(52)

Conclusion (ii.) is thus proved.

Proof of (iii.): We only need to prove that Tbr
p(bD) ⊂ h1,p(bD). Given r ∈ rp(bD),

by definition of rp(bD) there exists some h ∈ h1,p(bD) such that h satisfies (43). Due to the
uniqueness of solutions to (43) as proved in part (ii.), Tbr must be equal to h and thus
Tbr ∈ h1,p(bD).

6.2 Proof of Theorem 1.4

Let p ≥ 1 and r ∈ Lp(bD, σ). We first show that the holomorphic Robin problem (8) is
solvable if and only if r ∈ rp(bD). To see this, suppose that G is a solution to (8) with
datum r: then it is immediate from (8) and (10) that G ∈ H1,p(D), hence Ġ ∈ h1,p(bD).
Moreover (8), (9) and (36) give that

−i∂T Ġ(ζ) + b(ζ)Ġ(ζ) = r(ζ) for σ − a.e. ζ ∈ bD , (53)

proving that r ∈ rp(bD), see (14). Conversely, if r ∈ rp(bD) then it satisfies (53) for some
G ∈ H1,p(D), see (14) and (12), and it follows from (53), (9), (36), (10) and (2) that G
solves (8) with datum r.

Next, we observe that if G ∈ H1,p(D) is a solution of (8) with datum r ∈ rp(bD) then G
is also a solution of the regularity problem (6) with datum

f(ζ) := Tb r(ζ)
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(which is in h1,p(bD) by Proposition 6.2 (iii.)). Hence the uniqueness and the represen-
tation formula: G = (CD ◦ Tb)r follow from Theorem 1.2.

We are left to prove the estimate (20) for 1 < p < ∞. Since Tbr ∈ C1− 1
p (bD) by

Proposition 6.2 (i.), one has G := (CD ◦ Tb)r ∈ C1− 1
p (D) ∩ ϑ(D) with

∥G∥
C

1− 1
p (D)

≲ ∥Tbr∥
C

1− 1
p (bD)

.

In particular, by the above and (45)

∥G∗∥L∞(bD,σ) ≤ sup
z∈D

|G| ≲ ∥Tbr∥
C

1− 1
p (bD)

≲ ∥r∥Lp(bD,σ).

Moreover, since (G′)∗ ∈ Lp(bD, σ) by assumption, we have G′ ∈ Hp(D). Thus by Lemma
2.8, (36) and (52)

∥(G′)∗∥Lp(bD,σ) ≲∥ ˙(G′)∥Lp(bD,σ) = ∥∂TTbr∥Lp(bD,σ) ≲ ∥r∥Lp(bD,σ).

Remark 6.3. As an immediate consequence of Theorem 1.4, the data space for the holomor-
phic Robin problem can be characterized equivalently as

rpb(bD) =
{
r ∈ Lp(bD, σ) : Tbr ∈ h1,p(bD)

}
,

where Tbr is given by (18). On the other hand, from the proof of Proposition 6.2, given

r ∈ rpb(bD), the unique solution G also lies in C1− 1
p (D).
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